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Abstract: In this study, analytical-statistical solutions of the characteristics in gradually and abruptly expanded channel 

flows, such as velocity profile, turbulent shear stress profile and profiles of turbulent kinetic energy, energy dissipation rate, 

and dispersion coefficient are derived. Then, the comparisons of the analytical results are made with the results of 2-DH 

with depth-averaged numerical model solution and some experimental results.Good trends and agreements are obtained, 

and the expanding angletakes an important and relevant role on the main effect of these hydrodynamic items. The quasi-3D 

flow situation due to the downstream abruptly contracted channel with the upstream abruptly expanded channel is also 

shown and discussed. In this paper, the new contributions, ideas, clarifications and applications that resulted after the paper 

was given are presented. 
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1. Introduction 

There exist many practical engineering applications, 

such as tubular heat exchangers, capillary-tube viscometry, 

polymer processing, biomedical instruments, 

thermoforming, various manufacturing processes, fiber 

spinning, extrusion, injection molding, biomedical 

instruments, flow of refrigerant, flow control, energy 

dissipation, sediment treatment, etc., in which the behavior 

of flow field in the presence of the downstream with the 

gradual and sudden geometric expansions is important and 

it is one of the most fundamental phenomenon of study in 

the field of fluid mechanics with the Newtonian and 

non-Newtonian flow case being of particular interest. 

Several investigations have been performed in order to 

understand the incompressible flow downstream of a 

channel expansion, which is planar and is normal to the 

direction of the channel wall. These investigations have 

been both numerical. With the presence of various 

dissipative behaviors, investigations into this channel flow 

allow better understanding of boundary layer separation, 

re-attachment and recirculation, which are common 

features in engineering practice.  

As the direct result of turbulence generates at the 

boarders of a free or submerged case inlet jet, the fluid 

within the jet undergoes both lateral diffusion and 

deceleration, and at the same time, fluid from the 

surrounding region is brought into motion in more explicit 

terms. The difference in velocity between a jet and the 

region into which it is discharged gives rise to a 

pronounced degree of instability, and the latter steadily 

decaying through viscous shear forming energy dissipation 

rate. In view of the Newtonian principle of motion between 

action and reaction, moreover, it is realized that 

deceleration of the fluid in the jet can occur only through 

simultaneously acceleration of the surrounding fluid, so 

that the total rate of flow passing through successive 

sections of the jet actually increases with distance from the 

outlet. In the cases of β＝0°, 0°<β<4.6°, β≧4.6° andβ＝
90°, the circulating flow situation happens from the 

entrance until certain distance downstream. Within the 

circulation region, convective term, diffusion term, bottom 

stress, and the dispersion term in 2-D model exist due to the 

reason for the depth-integrated method from 3-D flow 

equation. The new velocity profile must be re-derived, and 

then the analytical turbulent shear stress, turbulent kinetic 

energy, and energy dissipation rate profiles are shown 

respectively for differentβ situations. After those 

procedures, the comparisons between numerical and 

analytical results are done to express the validity and 
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reliability of the analyses.  

2. Governing Equations 

Many turbulence models based on Reynolds-averaged 

Navier-Stokes equations,such as zero-equation turbulence 

model, one-equation turbulence model, two-equation 

turbulence model and Reynolds stress/flux model, have 

been successfully applied to the simulation of turbulent 

flows in computational fluid dynamics(CFD). In recent 

years, the large eddy simulation and direct numerical 

simulationof turbulent flows have also progressed 

remarkably. These turbulence modelingtechniques have 

been gradually applied in the simulation of river flows. 

However,because the computational domain in natural 

rivers is very irregular and evenmoveable, the simulation of 

turbulent flow in rivers is less developed and mostlystays 

on the level of twoequation turbulence models or simpler 

ones. For the depthaveraged simulation of river flows, one 

of the most often used two-equationturbulence models is 

Rastogi and Rodi’s [1] depth-averaged standard k- ε " 

turbulence model. In the present study, Chen and Kim’s [2] 

non-equilibrium k-ε"turbulence model and Yahkot et al’s [3] 

RNG k-ε" turbulence model, whichare widely used in CFD, 

are extended to the depth-averaged 2-D simulation ofriver 

flows. These two k-ε" turbulence models are compared 

with other threedepthaveraged turbulence models: the 

depthaveraged parabolic eddy viscositymodel, the modified 

mixing length model, and Rastogi and Rodi’s 

depth-averagedstandard k-ε" model.The depth-integrated 

continuity and momentum equations of turbulent flow in 

open channels are : 

���� � ������	 � ���
��� � 0             (1) 

��	 �HU�� � ��� �HUV� � gH ���	 � ���� � �������� �	 � �������� �� � 0 (2) 

����
��	 � ���
���� � gH ���� � ���� � �������� �	 � �������� �� � 0 (3) 

wheret is the time; x and y are the horizontal Cartesian 

coordinates; h is the flowdepth; U and V are the 

depth-averaged flow velocities in x- and y-directions; zsis 

the water surface elevation; g is the gravitational 

acceleration; is the densityof flow; It should be noted that 

Eqs. (2) and (3) do not include the dispersion termsthat 

exist due to the vertical non-uniformity of flow velocity. 

Their effect is assumed to be negligible in this study, but 

the treatment of these terms has beenstudied by Flokstra [4], 

Wu and Wang and others[5].andthe turbulent stresses are 

determined by Boussinesq’s assumption: 

τ � � ρc#U√U� � V�            (4) 

τ � � ρc#U√U� � V�            (5) 

c# � gn� h' (⁄⁄               (6) 

T		 � 2ρ�ν � ν�� ���	 � �( ρk         (7) 

T	� � T�	 � ρ�ν � ν�� .���� � �
�	/        (8) 

T�� � 2ρ�ν � ν�� �
�� � �( ρk         (9) 

Where?is the kinematic viscosity of water; ν�  is the 

eddy viscosity due to turbulence; k is the turbulence energy. 

The k in Eqs. (7)，(8) and (9) is dropped whenthe zero - 

equation turbulence models are considered. 

3. Models for Eddy Turbulent Viscosity 

3.1. Depth-Averaged Parabolic Eddy Viscosity Model 

Averaging the eddy viscosity, which approximately 

yields a parabolic profile, overthe flow depth, one can 

obtain the depth-averaged parabolic model for the 

eddyviscosity: 

ν� � α�U2h                  (10) 

U2 � 3c#�U� � V��4' �⁄             (11) 

where U2  is the bed shear velocity, and α�  is an 

empirical coefficient. Theoretically, α�should be equal to 

/6, with  being the van Karman’s constant. However, 

different values have been given to α�, which may be due 

to the anisotropic features of turbulence structures in 

horizontal and vertical directions. It is commonly accepted 

that α� is related to the ratio of channel width and flow 

depth, having values between 0.3 to 1.0 (Elder [6], Fischer 

et al [7]). 

3.2. Modified Mixing Length Model 

Eq. (10) is very simple. It is applicable in the region of 

main flow, but does not account for the influence of the 

horizontal gradient of velocity. Significant errors may exist 

when it is applied in the region close to rigid walls. 

Improvement can be achieved through the combination of 

Eq. (10) and Prandtl’s mixing length theory, which reads: 

ν� � 5�α6U2h�� � �ι��|S:|��          (12) 

|S:| � 32�∂U ∂x⁄ �� � 2�∂V ∂y⁄ �� � �∂U ∂y⁄ � ∂V ∂x⁄ ��4' �⁄  (13) 

ι� � κmin �cBh, y�             (14) 

whereα6is an empirical coefficient, set as /6 ; ι� is the 

horizontal mixing length, with y being the distance to the 

nearest wall, and cm anempirical coefficient. 

3.3. Standard k-D" Turbulence Model 

Rastogi and Rodi [1] established the depth averaged k-ε" 

turbulence modelthrough depthintegrating with the 3-D 

standard k-ε" model. The eddy viscosity ν�iscalculated by 

ν� � cµk� ε⁄                  (15) 
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Where cµ  is an empirical constant. The turbulence 

energy k and its dissipationrate " are determined with the 

following model transport equations: 

UF �GF�	 � VF �GF�	 � ��	 .H:IJI
�GF�	/ � ��� .H:IJI

�GF��/  � P� � PGH � ε (16) 

UF �L:�	 � VF �L:�	 � ��	 .H:IJM
�L:�	/ � ��� .H:IJM

�L:��/ � c'L .L:GF/ P� � PLH � c�L .L:�
GF /  (17) 

where P� � ν�|S:|� , PGH � c#N' �⁄ U2( h⁄ ;  and cµ � 0.09; c'L � 1.44; c�L � 1.92; PLH � cLTcL�cµ' �⁄ c#N( U⁄ U2U h�⁄ ; σG � 1.0; σL � 1.3; cLT � 1.8 to 3.6 

3.4. Non-equilibrium k-D" Turbulence Model 

Chen and Kim [2] modified the standard k-ε" turbulence 

model to consider thenon-equilibrium between the 

generation and dissipation of turbulence. A secondtime 

scale of the production range of turbulence kinetic energy 

spectrum is added to the dissipation rate equation, which 

results in a functional form of coefficient, 

cL' � 1.15 � 0.25P�ε . 
cµ � 0.09; c�L � 1.90; 

σG � 0.8927; σL � 1.15; 

The modified model was called the non-equilibriumk-ε" 

turbulence model (Shyy et al [8]), which has been tested in 

a compressible recirculating flow with improved 

performance over the standard model. ByusingRastogi and 

Rodi’s [1] depth-averaging approach, the 

depth-averagednon-equilibrium k-ε" model can be derived 

from the 3-D version. The formulationsof k- and 

"ε-equations are still the same as Eqs. (16) and (17), with 

only the modelcoefficients being replaced accordingly. 

3.5. RNG k-^" Turbulence Model 

Yakhot et al [3] re-derived the "ε-equation (17) using the 

re-normalized group(RNG) theory. One new term was 

introduced to take into account the highlyanisotropic 

features, usually associated with regions of large shear, and 

to modifythe viscosity accordingly. This term was claimed 

to improve the simulation ac-curacy of the RNG k-ε" 

turbulence model for highly strained flow. By analogy tothe 

above non-equilibrium turbulence model, thedepthaveraged 

2-D RNG k-ε"turbulence model can also be derived, whose 

k- and "ε-equations are the sameas Eqs. (16) and (17), with 

the new term being included in the coefficient, 

cL' � 1.42 � η �1 � η η0⁄ � �1 � βη(�⁄  

β � 0.015, η � |S:| k ε , η0 � 4.38⁄  

cµ � 0.085, cL� � 1.68, σk � 0.7179, σL � 0.7179 

 

4. Boundary Conditions 

Near rigid wall boundaries, such as banks and islands, 

the wall-function approach is employed. By applying the 

log-law of velocity, the resultant wall shear stress τabc is 

related to the flow velocity Vaabd at center P of the control 

volume close to the wall, by the following relation: 

τabc � �λVaabd                  (18) 

λ � ρcµ' U⁄ kf' �⁄ κ ln�Eyfi�j            (19) 

11.6 k yfi k 300, yfi � ρcµ' U⁄ kf' �⁄ yf µj ,u2 � cµ' U⁄ kf' �⁄
, 

which can be obtained with the assumption of local 

equilibrium of turbulence (see Rodi [9]). In the 

zero-equation turbulence models, theturbulence energy k is 

not solved, hence is determined by 

λ � ρu2κ ln�Eyfi�⁄ , yfi � ρu2yf µ⁄ , 

In three k- ε " turbulence models, the turbulence 

generation Ph and thedissipation rate near the wall are 

determined by, 

P�,d � τc� κµyfi⁄ , εp � cµ( U⁄ kd( �⁄ κ⁄ yf 

5. Analytical Solutions 

5.1. Gradually Expanded Channel Flow with Their 

Hydrodynamic Characteristics  

In Luo[10], the proposed resultant equations are : 

1. For 0°<β<4.6°, p﹡=1.105β–0.565β²+0.08β³≦0.5 

A. Primary velocity profile 

U�y�
u2 � 1

κ
ln .10yu2

ν
/ � K

2κ
.yp2
r

/ .U0
u2 /2       (20) 

B. Turbulent shear stress profile 

�n� � u2� � d2�o��Up                (21) 

C. Turbulent viscosity coefficient 

ν�ty� � �τw ρ⁄ �3dU�y� dy⁄ 4  � κyu2           (22) 

D. Turbulent kinetic energy profile 

k: � '�
qr
s
rt0.027 .Huo�FiH�o�o�o�ouv�F /' U⁄ U�

� . (d2�o��'6p wxy z/ �
 � �o{�{d2�y|w�z(6p{}2� ~r

�
r�

         (23) 

E. Energy dissipation rate profile 

ε: � cµ GF�
H:I                 (24) 
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F. Dispersion Coefficient 

DF� � N'uv � U��y� � 'HI�
�6uv6 � U��6 �y�dydydy   (25) 

and     U�y� � UF�y� � U��y�      (26) 

where  (y) is the integration of U(y) with respect to the 

width B along the flow 

DF� � }2uv��� � 6.���d2uv��o�'���p}2 � d2�uv��o{'�(p�}2��     (27) 

2. For β≧4.6° and  p﹡=0.5 for β≧4.6°: 

A. Primary velocity profile 

U�y�
u2 � 2

κ
. y
ι

/1 2⁄ � 2

κ
.yp2
r

/1 2⁄ .U0
u2 / .B0

Be
/     (28) 

B. Turbulent shear stress profile 

�n� � .�o}2uouv / . ��p/' �⁄
          (29) 

C. Turbulent viscosity coefficient 

ν���� � ��n �⁄ �3����� ��⁄ 4 � κyu2          (30) 

D. Turbulent kinetic energy profile 

k: � 12 �u/�:::: � ν/�::::� � 12ρ �τ:		 � τ:��� 

� '�
qr
s
rt0.027 .Huv�FiH�o�o�o�o�Fuv /' U⁄ U�

� .'(�o}2��6p wxy z/ .uvuo/' U⁄ �
 � �o���uo�(�G�p�uv� ~r

�
r�

       (31) 

E. Energy dissipation rate profile 

ε: � cµ GF�
H:I                 (32) 

F. Dispersion Coefficient 

DF� � .'�uv���p / .�o�}2 / .uouv/�
          (33) 

3. For β＝0°: 

A. Primary velocity profile 

U�y�
u2 � 1

κ
ln .10yu2

ν
/            (34) 

B. Turbulent shear stress profile 

�n� � u2�                (35) 

C. Turbulent viscosity coefficient 

ν���� � ��n �⁄ �3����� ��⁄ 4 � κyu2          (36) 

D. Turbulent kinetic energy profile 

k: � '� �0.027 .Huo�FiH�o�o�o�o�Fuo /' U⁄ · U��     (37) 

E. Energy dissipation rate profile 

ε: � cµ GF�
H:I                  (38) 

F. Dispersion Coefficient 

DF� � 6.U6U�� B|u2             (39) 

5.2. Abruptly Expanded Channel Flow with Their 

Hydrodynamic Characteristics (For β＝＝＝＝90°) 

In view of the Newtonian principle of motion between 

action and reaction, moreover, it is realized that 

deceleration of the fluid in the jet can occur only through 

simultaneously acceleration of the surrounding fluid, so 

that the total rate of flow passion through successive 

sections of the jet actually increases with distance from the 

outlet. In this case, β＝90°, the circulating flow situation 

happens from the entrance until certain distance 

downstream. Within the circulation region, convective term, 

diffusion term, bottom stress, and the dispersion term in 

2-D modeling exist due to the reason for the 

depth-integrated method from 3-D flow equation. The new 

velocity profile must be re-derived. See Albertson [11] and 

the analytical results are solved here.  

5.2.1. Primary Velocity Profile 

The approximate characteristics of the corresponding 

mean flow pattern are expressed based on the assumptions 

that; (1) the pressure is hydrostatically distributed through 

the flow; (2) the diffusion process is dynamically similar 

under all conditions; (3) the longitudinal component of 

velocity within the diffusion region varies according to the 

normal probability function at each cross section 

����� � Exp �� ��
�J��            (40) 

in which y is the lateral distance counted from the 

centerline of the expanding channel, while σis the lateral 

distance where U=0.605Umax. Based on the condition of 

dynamic similarity simultaneously σ /x= constant=C is 

required that at all cross-section, regardless of the efflux 

velocity. It hints the angle of jet diffusion must be constant. 

By using the mixing-length-hypothesis, 

ℓ� . ��o/ � �42.3 �0.096 � �N�o�	 ��
       (41) 

and 

ℓ� . ��o/ �5 	 o� � 0.83 � 4.24 .��
	�/      (42) 

where Eq.(41) is for the zone of flow establishment, 

U
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x x0, and ≦ Eq. (42) is for the zone of established flow, x≧
x0, and  

x6 � 5.2b6              (43) 

The limitation of the lateral velocity V, based on the 

momentum conservation and mixing length-hypothesis, is 

lim��� . 
�o/ 5 	 o � �0.155         (44) 

�}�	 � �H�� � 0               (45) 

5.2.2. Turbulent Shear Stress 

T		2 � 0.04qH�H � 0.02qH�H         (46) 

T��2 � 0.04qH�H � 7.2qH� .��
p� /        (47) 

T	�2 � 0.015qH�H � 0.34qH� .��
p� /       (48) 

u�ν�::::: � 0.015qH� � �ν' ���� ; qH � √U� � V�    (49) 

5.2.3. Turbulent Viscosity Coefficient 

ν�� � � }�H�::::::
��� ��⁄ � �  ¡	�

���� ; ν��¢6 � ν��¢�o� ;    (50) 

5.2.4. Turbulent Kinetic Energy Profile 

k: � 0.015qH� � 1.85qH� .�p�/          (51) 

x| � �4or5� . � �  o� /             (52) 

rw � '� .¤Hw� � x¥�/ csc α � '� �517 . � �  o� /�� �√17� � 8.5 . � �  o� / (53) 

cG � '¤w§ ; cL � (.�w�Mw§� �⁄ ¤c}            (54) 

c'¨ � c�¨ � G�
J¤wµ               (55) 

cµ � 0.09;  c'L � 1.44;  c�L � 1.92; σG � 1.0; σL � 1.3 

5.2.5. Energy Dissipation Rate Profile 

ε: � cµ G�::::
HI:::                 (56) 

5.2.6. Coefficient of Energy Loss 

Problems of major concern related to the efficiency and 

safety of sudden enlargement energy dissipation are the loss 

coefficient, cavitation potential and pressure fluctuation for 

a certain type of in-line sudden enlargement dissipator, 

even for a series of sudden enlargement which has been 

researched by Zhang [12]. 

It is well-known that the loss in head at the sudden 

enlargement can be approximately expressed by the Borda 

formula: 

∆H � ��oN���
�ª � .1 � «o« /� �o��ª � k¬ .�o��ª/     (57) 

It is clear to see that the efficiency of energy dissipator 

through sudden enlargement depends very much on the loss 

coefficient of the relevant enlargement. The head losses are 

often measured at the reference points, such as four widths 

of downstream of the enlargement. And from the above 

equation and the measured points where the eddy action or 

turbulence approaches to minimum, velocity distribution 

across the cross-section of open channel becomes 

practically uniform and pressure head reaches a constant 

value, the Borda formula can then be used to determine its 

loss coefficient kL with sufficient accuracy and the safe 

side.  

k¬ � ¥oN¥
�­o��®� � .1 � «o« /�

             (58) 

E6 � �o��ª � h6; E � ��::::
�ª � h            (59) 

h � �o�o�F                  (60) 

UF � .U�o / �¤xb6� �erf .'.6( o	 / � '��       (61) 

where U0 is the velocity of inflow and h0 is the depth of 

inlet, and h will be set as the same value of inlet for 

diverging wall flow, 0°<β<4.6°, and the abruptly expanded 

channel flow. From the view point of the diffuser pressure 

recovery of gradually and abruptly expanded pipe flow, the 

upper limit of Reynolds number is 75,000. For the case of 

open channel flow, the maximum applied Reynolds number 

will be one-fourth of the magnitude of pipe flow because 

the characteristic length, the diameter of the pipe, is four 

times of the open channel hydraulic radius.  

6. Results, Comparisons and Discussion 

6.1. Gradually Expanded Channel Flow 

The 2-DH gradually expanded flow numerical scheme 

with different angel of β, such as Yu et al 〔13〕and 

Gayathri S. et al. 〔14〕,is in Fig.1, and the comparisons 

between numerical and analytical results are following in 

Figs. 2, 3, and 4, respectively. 

6.2. Abruptly Expanded Channel Flow 

The comparisons for the abruptly expanded channel 

flows, between the analytical results, by using Eqs.(41) and 

(42) for developing and developed regions of submerged 

jets, respectively, and the numerical results from Tran 

Thuc[15] are presented in Figs. 5 and 6 which express the 

velocity profile in the primary flow direction. The well 

agreements are obtained within the region of the 

developing submerged jets but the sharper shapes of normal 

distribution from numerical results are found in the 

developed zone. This is due to the end wall effect at the 
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outlet. The suddenly reduce opening of the outlet will form 

three-dimensional flow situation and affect the turbulent 

phenomena and quantities in this developed regions, say 

x 5.2b0≧ ,but the effect of end wall of outlet will not reach 

in the developing regions. Another numerical results of the 

abruptly varied channel without the end wall and with 

enough pool length are run. The good agreements are 

obtained in Fig. 6. The comparison of turbulent kinetic 

energy and energy dissipation rare between analytical and 

numerical results for the case of enough pool length 

without end wall effect are shown in Fig. 7 which is 

without considering the dispersion effects in the analytical 

solutions in Eq (51). The good trends and acceptable 

comparisons between analytical and numerical results 

presented. The kL is also compared for the abruptly 

expanded flow situations between approximate results in 

Eq. (58) and Borda and Zhang [12] in Fig. 10. The quite 

good agreement is obtained again.  

7. Conclusions and Application 

7.1. Gradually Expanded Channel Flow 

1. The analytical primary velocity profiles, profiles of 

turbulent kinetic energy and energy dissipation rate for 

twodimensional horizontal plane diffuser-wall flows 

outside of the turbulent boundary layers are compared with 

the corresponding situations from the numerical results. It 

can be seen from Fig. 2 that the uniform velocity at inlet of 

0.5 m/s decreases as it moves downstream. These velocity 

profiles at x =0.5, 1.0, 1.5, and 2.0 m are in Fig. 3 together 

with k and ε, which shows that k and εdecrease as x 

increase but at slower rate than U. The turbulent kinetic 

energy shows the smallest reduction from upstream to 

downstream. These are due to the jet flux and the 

increasing of turbulent boundary thickness along the flow, 

respectively. The more uniform decreasing on velocity 

along the flow to the downstream for a given divergent 

channel  makes the flow better stable even with a little bit 

decreasing  with k and ε, this regulation will give good 

flow control before the flow goes into power plant in order 

to avoid the damage on the instruments. 

2. The comparisons of analytical and numerical results 

about velocity, turbulent kinetic energy and energy 

dissipation rate for different β-value at the position of x 

=2.0 m from the inlet are shown in Fig. 4. From this figure 

in the case of β＝3°, the differences between analytical and 

numerical results on the velocity profile and two turbulent 

items are very limited. When β＝6°, which is located in the 

region of transition zone of diffuser-wall flows from small 

core-angel to big one, the comparisons of primary velocity 

profile, turbulent kinetic energy and energy dissipation rate 

between analytical and numerical results give a little 

smaller values than the ones for β＝3°, but the trends and 

the agreements are still agreeable and acceptable.  

 

3. In the case of big core-angel diffuser-wall flow, such 

as β＝30° or β＝60°, which show higher values of k and 

εthan the results of β＝3° and β＝6° shown. From Fig. 3, 

the analytical results of primary velocity and the two 

turbulent items are larger than the numerical ones at the 

positions near the inlet, such as x =0.5m. This is due to the 

different distribution forms of primary velocity, the 

parabolic distribution for analytical result while logarithmic 

formula for the numerical one. The logarithmic distribution 

has higher turbulence and energy loss near to the wall, 

therefore, the higher turbulent kinetic energy and energy 

dissipation rate with larger primary velocity are presented 

near wall, too. And the parabolic form for analytical 

solutions just express the inverse phenomena.  

 

Fig 1. Grid system used in two dimensional depth-averaged model of β＝

3° with L＝3m, ∆x＝0.1m, ∆y＝0.01m, ∆t＝0.06 sec. 

 

Fig 2. Comparisons of analytical and numerical primary velocity profiles 

forβ＝30°, U0=0.5m/s, h0＝0.15m, and B0＝0.10m. 
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Fig 3. Comparisons of primary velocity U, turbulent kinetic energy k, and 

energy dissipation rate ε, between analytical and numerical results for 

diffuser- wall flow with β＝30°, ν＝0.001m2/s, U0=0.5m/s, h0＝0.15m, 

and B0＝0.10m.along the primary flow direction 

 

Fig 4. Comparisons of primary velocity U, turbulent kinetic energy k, and 

energy dissipation rate ε, between analytical and numerical results for 

different  diffuser- wall β- value flow with ν＝0.001m2/s, U0=0.5m/s, h0

＝0.15m,  B0＝0.10m, and X＝2m .along the primary flow direction 

4. Whenβ<0°, the dispersion coefficient can be 

expressed as the following equation, Eq.(62), and after the 

comparisons of the magnitude of turbulent viscosity and 

dispersion coefficients with different β-value for different 

relative width, the results are obtained as Eqs. (63) and (64), 

then the relative scales of mean dispersions coefficients are 

presented in Fig. 8. 

DF� � � 1B| ± D�dyuv
6 , that is, 

DF� � .z�}2uv��� / ³.µ́­�¶2 N�.�6·/�
.�¸.'�i¹�µ{/ º � .z�}2uv·�� / ³.µ́­�¶2 N�.�6·/�

�¸.'�i¹�µ{ º  �
.z}2uv�� / �lnB|�� ³.µ́­�¶2 N�.�6·/�

.�¸.'�i¹�µ{/ º � .z}2uv�� / ³.µ́­�¶2 N�.�6·/�
.�¸.'�i¹�µ{/ º �lnB|�  �

.�z�}2uv�� / .1 � '� lnB|/ ³.µ́­�¶2 N�.�6·/�
.�¸.'�i¹�µ{/ º                  (62) 

ν:�,z»6, ¼ ν:�,z¢6, ¼ ν:�,6»½»U.�o, ¼ ν:�,z¾U.�o,    (63) 

DFz»6, ¼ DFz¢6, ¼ DF6»½»U.�o ¼ DFz¾U.�o     (64) 

5. With the following expressing equations for energy 

loss coefficient, kL, on the situation of gradually expanded 

flow in Eqs. (58), (59), (60) and (61), and the analytical 

result of kL is compared with the result from Gerhart, et al

〔16〕 in Fig. 9. Good trends are obtained. 

6. From the trends of turbulent kinetic energy and energy 

dissipation rate of Fig. 4, it is found that these two turbulent 

items will increase significantly with increasing the 

half-angel, β. These are because of the phenomena of the 

jet flux, which reduces the primary velocity and increases 

the velocity fluctuation at the same time, and the increasing 

of turbulent boundary layer thickness, which has much 

more strong eddies with larger energy loss. Generally 

speaking, the analytical results based on the plane turbulent 

free jets for diffuser-wall flows can be valid for wide range 

of β-value, such as from β＝3° to β＝60°. The transfer due 

to diffusion or dispersion phenomena from Yang C. S. et al

〔17〕can be study and discuss further and compare with 

the diffusion or dispersion coefficients for different 

divergent angels of this research. Here, in Fig.9, of 

2β=180°, the kL is between 1.0 and 1.1, and this result has 

good match one with that of abruptly expanded flow 

situations on  radius or width ratio equal to zero, which 

means β=90°, in Fig. 10. 

7. The energy dissipation rate, ε, in Fig. 4, has the 

consistency with the trend of Fig. 9, on energy loss 

coefficient, and this shows us again that flow regulation 

with divergent channel can effectively reach flow 

uniformity with reduction of the turbulence in main flow 

direction for mitigation on the damage risk of power plant. 

We also can get some good information from Eqs. (63) and 

(64), for both turbulent viscosity for sedimentation and 

dispersion coefficient for contamination. These parameters 

express the significant efficiencies on solid particles 

spreading or settlement on the width direction to protect the 
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turbines.

 

Fig 5. The Definition of Abruptly Expanded Flow 

 

Fig 6. Comparison of Analytical and Numerical X – component Velocity Depth – AveragedHydrodynamic Model for Abruptly Varied Flows with 

B0=0.10m, B=2.0m, β=90∘ 
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Fig 7. Comparisons of Primary Velocity, U, Turbulent Kinetic Energy, k, and Energy Dissipation Rate, E, between Analytical and Numerical Results on 

Abruptly Expanded Channel Flow with β=90∘, B0=0.1m, B=2.0m, Uin=0.5m/s, H=0.15m, ν=1.01mm2/s for Different Position along the Flow without  

Considering Dispersion Effects 

 

Fig 8. Distributions of dimensionless dispersion coefficients value outside 

boundary for differentβ-value with B0＝5m, X＝10m, U0＝0.7m/s, 

friction velocity 0.050m/s,κ＝0.4, and h＝0.15m 

 

Fig 9. Comparison of energy loss coefficient, KL, for gradually divergent 

wall flow between approximate results and experimental ones from 

Gerhart, et al (1985) 
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Fig 10. Comparison of energy loss coefficient, KL, for 

Abruptlyexpandedchannel flow between approximate results 

andexperimental ones from Gerhart, et al (1985) 

7.2. Abruptly Expanded Channel Flow 

1. The analytical results on the coefficients of head loss 

for abruptly varied plane flows are derived based on the 

analytical velocity profiles with one-dimensional 

Navier-Stoke’s equation. Good trends were obtained after 

comparing the analytical results with the results of 

experimental or numerical methods. 

2. The abruptly expanded channel flow can be used 

together with the spillway or sluice gate to quickly release 

energy and protect the hydraulic structure. Generally 

speaking, the flow situations of 2-DV and 2-DH can always 

be linked to achieve the hydraulically protecting purpose. 
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